
Proteins Associated with SF3a60 in T. brucei
Benson Nyambega1,2,3*¤, Claudia Helbig3, Daniel K. Masiga2, Christine Clayton3, Mariano J. Levin1

1 Laboratorio de Biologı́a Molecular de la Enfermedad de Chagas, Instituto de Investigacı́ones en Ingenierı́a Genética y Biologı́a Molecular (INGEBI), Buenos Aires,
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Abstract

Trypanosoma brucei relies on Spliced leader trans splicing to generate functional messenger RNAs. Trans splicing joins the
specialized SL exon from the SL RNA to pre-mRNAs and is mediated by the trans-spliceosome, which is made up of small
nuclear ribonucleoprotein particles and non-snRNP factors. Although the trans spliceosome is essential for trypanosomatid
gene expression, not all spliceosomal protein factors are known and of these, only a few are completely characterized. In
this study, we have characterized the trypanosome Splicing Factor, SF3a60, the only currently annotated SF3a component.
As expected, epitope-tagged SF3a60 localizes in the trypanosome nucleus. SF3a60 is essential for cell viability but its
depletion seem to have no detectable effect on trans-splicing. In addition, we used SF3a60 as bait in a Yeast-2-hybrid
system screen and identified its interacting protein factors. The interactions with SF3a120, SF3a66 and SAP130 were
confirmed by tandem affinity purification and mass spectrometry.
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Introduction

Trypanosoma brucei is responsible for Human African Trypano-

somiasis (HAT) and Animal African trypanosomiasis (AAT) in

sub-Saharan Africa. This parasite relies on trans splicing where a

common spliced leader (SL) is added to the 59end of all immature

mRNA transcripts to generate functional messenger RNAs. Trans

splicing is mediated by the trans-spliceosome, which consists of

small nuclear ribonucleoprotein particles (snRNPs) and non-

snRNP factors (reviewed in [1,2]). In higher eukaryotes, the

assembly of the spliceosome involves both recognition of the 59

splice site, the branch point and the 39 splice site, mediated by U1

snRNP, branch-point-binding protein (SF1) and U2AF respec-

tively. In mammals, the large subunit of U2AF recognizes the

polypyrimidine tract while the small subunit binds to the 39 splice

site. Subsequently, the U2 snRNP is recruited and the U2 snRNA

base pairs with the branch point sequence, displacing SF1 in a

process mediated by the U2-associated protein complexes SF3a

and SF3b. A similar sequence of events is thought to occur in

trypanosomes, except that during trans splicing, the U1 snRNP is

replaced by the spliced leader RNP (reviewed in [2]). In

trypanosomes, the equivalents of all five mammalian small nuclear

RNAs (snRNAs) and the corresponding snRNPs [3,4] have been

described; they deviate in several aspects from their human

homologues. Systematic analyses of proteins harboring specific

motifs [5–9], Tandem Affinity Purification (TAP-tagging) of

splicing complexes coupled to mass spectrophotometric identifi-

cation [2,10] and in silico analyses [4] have enabled the

identification and compilation of a list of spliceosomal proteins

in T. brucei, including the trypanosome orthologues of all seven

human SF3b components.

We focus here on trypanosome SF3a. In humans and yeast,

SF3a contains three subunits: SF3a60 (yeast Prp9), SF3a66 (Prp11)

and SF3a120 (Prp21), and each is essential for pre-splicing

complex A formation [11,12] and viability [12,13]. Of these, only

the SF3a60 subunit is currently annotated in the T. brucei genome

database. We here functionally characterized T. brucei splicing

factor SF3a60 and identified interacting protein partners via Yeast

2 Hybrid (Y2H) and TAP-tagging analyses.

Methods

Culture and Transfection
Trypanosoma brucei bloodstream and procyclic 427–1313 cells

containing plasmid pHD 514 [18] were cultured in either HMI-9

medium for bloodstream cell lines [14] or MEM-PROS medium

for procyclic cell lines [15], supplemented with 10% (vol/vol) fetal

calf serum (Sigma-Aldrich). Cells were transfected as described

previously [16].

Cloning of TbSF3a60 and Identification of Proteins that
Interact with T. brucei SF3a60 by Yeast Two-hybrid
Screening
The coding sequence TbSF3a60 (TriTrypDB accession number

Tb927.6.3160) was PCR amplified from 100 ng of total genomic

DNA of T. brucei 927 strain using the primers SF3a forward,

GGATCCAATGTTTGGTGGAGTTTTAGAAAAGAT bear-

ing BamHI and reverse, TCAACCTGTTTTCCTCGA-
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CATCTG. The PCR product was cloned into pGEM-T

(Promega), subsequently digested with BamHI and NotI and

subcloned in frame into the ProQuest Yeast Two-Hybrid Gateway

compatible System (Invitrogen). Bait cloning and Y2H screening

were performed by Hybrigenics, S. A., Paris, France (http://www.

hybrigenics.com/services.html). DNA from Trypanosoma brucei 927

strain, prepared by Dr. M. Turner, Glasgow Biomedical Research

Centre, University of Glasgow, Scotland, UK, was randomly

sheared and used to construct genomic library into the Y187 yeast

strain. The library contained 7.5 million independent fragments,

and was used for screening [17]. Twelve million interactions were

actually tested with SF3a60. After selection on medium lacking

Leu, Trp and His, 246 positive clones were picked from SF3a60

full-scale screen.

Expression and TAP-tag Purification of T. brucei SF3a60
Procyclic trypanosomes expressing the tetracycline (tet) repressor

from plasmid pHD1313 [18] were transfected with pHD 918

(tetracycline-inducible expression of the Tandem Affinity Purifi-

cation (TAP) tag. The coding sequence of SF3a60 (1629 bp) was

amplified using primers CZ3371

(CGGGGCCCATGTTTGGTGGAGTTTTAGAAAAG (sense,

ApaI site)) and CZ3372 (ATGTTAACACCTGTTTTC (antisense,

HpaI site, no stop codon)) and genomic DNA of T. brucei strain

Lister 427 as template. To express C-terminally TAP-tagged

SF3a60, the open reading frame (ORF) was cloned in the ApaI and

HpaI sites of pHD 918 [19]. Expression of the TAP tag alone and

TAP-tagged TbSF3a60 was induced by adding 100 ng/ml

tetracycline and cells were harvested 24 h later. Tandem affinity

purified SF3a60 from procyclic trypanosomes [19] was separated

on a 12% Sodium dodecyl sulphate (SDS-PAGE) and proteins

stained with SYPRO Ruby following the manufacturer’s instruc-

tions (Invitrogen, Oregon, USA). The SF3a60 associated protein

bands were excised and analyzed by nano-HPLC-electrospray

ionization quadruple-time of flight-mass spectrometry (nano-

HPLC ESI-QUAD TOF MS) and peaks identified as described

elsewhere [20]. MS generated data were subjected to analysis with

the Mascot software version 2.1.04.

Western Blotting and Immunofluorescence of T. brucei
Expressing the TAP-Tagged Proteins
Western blotting was performed as previously described [21].

Briefly, 26106 procyclic form T. brucei clones at log phase of

growth were harvested, resuspended in Laemli buffer, subsequent-

ly separated on a denaturing 11% SDS-PAGE gel. Proteins were

transferred to a nylon Hybond P membrane (Amersham

Pharmacia), incubated with a 1:50000 dilution of rabbit anti-

Protein A antibody in transfer buffer and probed for expression of

TbSF3a60-TAP using the peroxidase-anti-peroxidase complex

(1:50,000, Polysciences, Inc. - www.polysciences.com). Subse-

quently, clones expressing C-terminally TAP-tagged SF3a60 were

harvested and the subcellular localization of the tagged SF3a60

determined by indirect immunofluorescence [22]. To detect the

over-expressed SF3a60-TAP, 106 trypanosomes were sedimented,

re-suspended, then fixed in 4% paraformaldehyde (w/v) in 1x PBS

for 18 min, sedimented again for 2 min, re-suspended in

phosphate buffered saline (PBS), and allowed to settle down on

a poly-lysine-coated glass surface for 25 min. Cells were blocked

with 0.5% gelatin/PBS and thereafter incubated with a 1:50000

dilution of rabbit anti-Protein A antibody (Sigma) for 1 h and with

a 1:500 dilution of the second antibody Alexa Fluor 594 goat a-

rabbit IgG (Molecular 25 probes) for 40 min. The kinetoplast and

the nuclear DNA were then stained with 100 ng/ml DAPI/1x

PBS for 10 min.

RNAi-mediated Silencing of T. brucei SF3a60
For RNAi in bloodstream forms, gene-specific fragments of

,500 nt [23] were cloned into the vector p2T7TA blue [18] using

the primers: 59-GAGAAGATCTGCATGCGAGAAGC-

CACCTTCACTCGA–39, 59- CGGAATTCGTCGACGTTC-

CACCACATACCTCGCA–39 for the 1629 bp SF3a60. In this

vector, the RNA interference (RNAi) fragments are flanked by

opposing T7 promoters with downstream tet operators. The

resulting plasmids were linearized with Not I and transfected into

bloodstream-form trypanosomes expressing the tet repressor (pHD

1313) and T7 RNA polymerase (pHD514) [18]. Transfectants

Figure 1. Trypanosome SF3a60 localizes in the nucleus. (A) Cells expressing SF3a60-TAP and the TAP tag with (+) and without (2) tetracycline
induction after Western blot analyses. The SF3a60-TAP is conditionally expressed while tubulin (TUB) expression is used as control and (B).
Immunofluorescence of procyclic form trypanosomes TAP-tagged TbSF3a60 counterstained for TbSF3a60 (red) and for DNA (DAPI).
doi:10.1371/journal.pone.0091956.g001

Trypanosome SF3a60

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e91956

http://www.hybrigenics.com/services.html
http://www.hybrigenics.com/services.html
www.polysciences.com


were selected in 10 mg/ml hygromycin and cloned by limiting

dilution. RNAi was induced by adding tetracycline to the medium

at a concentration of 1 mg/ml. Samples were taken after every 24

hours of RNAi induction for three days.

RNA Isolation and Northern Blotting
Total RNA was isolated from bloodstream T. brucei cell lines

using Trifast (PeqLab Biotechnology GmbH). Total RNA (10 mg
each) were separated on a denaturing formaldehyde agarose gel

and blotted onto a Hybond N nylon membrane (Amersham

Pharmacia). The TbSF3a60, Tubulin (TUB) and SRP DNA probes

were labeled with [a32P]dCTP by random priming (Stratagene).

After overnight hybridization, blots were subsequently washed in

16 SSC (0.15 M NaCl plus 0.015 M sodium citrate) and 0.1%

sodium dodecyl sulfate (SDS) for 30 min at room temperature, in

pre-warmed 16 SSC and 0.5% SDS for 45 min at 42uC, and in

0.16SSC and 0.2% SDS for 30 min at 42uC before exposure to

film phosphor imager.

Primer Extension and Analysis of Splicing Intermediates
To assess the effect of TbSF3a60 RNAi depletion on splicing,

the amounts of SLRNA and Y-structure splicing intermediates were

assessed by primer extension [24,25]. RNA was prepared from the

Figure 2. S3a60 is essential for trypanosome viability. (A)
Cumulative growth curves of TbSF3a60 depleted trypanosomes. The
cells grown with (triangles, solid line) or without (squares, dashed line)
tetracycline. Every 24 h, samples were taken for the determination of
cell density (cells/ml), and grown cultures were diluted down to 56105

cells/ml with fresh medium. (B). Effect on SF3a60 mRNA. Cells were
grown either without Tet (–), or in the presence of 100 ng/ml Tet (+) for
24, 48 and 72 hours. Each lane on the Northern blot contains 10 mg RNA
from bloodstream form wild type (WT) or an RNAi cell line. Asterisk (*)
denotes dsRNA. Trypanosome SRP and Tubulin (TUB) RNAs are used as
loading controls. Arrow indicates SF3a60 mRNA.
doi:10.1371/journal.pone.0091956.g002

Figure 3. SF3a60 RNAi has no effect on splicing. The Y structure
trans splicing intermediate is not decreased after two days of RNAi
targeting SF3a60. The full-length spliced leader RNA and the Y structure
were detected by primer extension (diagram in panel A) followed by
denaturing polyacrylamide gel electrophoresis (B) with the U3 snRNA as
a loading control. The RNA was prepared from the RNAi cell line grown
without tetracycline (panel B, lanes 1 and 4), or with tetracycline for one
or two days (lanes 2 and 3). M: markers.
doi:10.1371/journal.pone.0091956.g003

Figure 4. Preparative tandem affinity purification identifies
SF3a60 associated proteins. Proteins were separated on 12% SDS-
PAGE and stained with SYPRO Ruby. Marker protein sizes in kilo Daltons
are indicated on the left and corresponding protein bands are on the
right. Details are in Table 1.
doi:10.1371/journal.pone.0091956.g004

Trypanosome SF3a60
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RNAi cell line grown without tetracycline, or with tetracycline for

one or two days. Effectiveness of the RNAi was tested by growth

inhibition when the cultures were maintained for a further day.

Cells without tetracycline were also incubated with 2 mg/ml

Sinefungin for 15 min. Total RNA was hybridized with either the

spliced leader primer CZ2711 (59-GCAGGAACCAACAGCA-

CAATGCG-39) or a U3 snRNA (primer CZ2712 59-

TGCCGTTCATCGAAC-39) before incubation with reverse

transcriptase and dNTPs, including radioactive dCTP. The

products were run on a 6% polyacrylamide/urea gel with 32P-

labelled DNA markers and detected by phosphorimaging.

Results

SF3a60 is in the Trypanosome Nucleus
Trypanosome SF3a60 (Tb927.6.3160) is already annotated as

such in the genome database, although without experimental

evidence. To determine its location, we expressed SF3a60 with a

C-terminal TAP-tag in procyclic trypanosomes (Figure 1A). Cells

expressing the tagged protein grew normally and SF3a60-TAP

was detected exclusively within the nucleus (Figure 1B) although

unequivocal evidence would require the detection of endogenous

SF3a60 via immunofluorescence with anti-SF3a60 antibody.

Figure 5. C2H2 and SWAP/Surp domains are also conserved in SF3a subunits. Black and light grey shading indicate identical and
conserved amino acid residues, respectively. A. T. brucei, Homo sapiens (AAH11523.1) and Saccharomyces cerevisiae (CAA98589.1). Human, yeast and
T. brucei have each, a C-terminal C2H2-like Zn finger motif while yeast has a second N-terminal C2H2-like motif. B. T. brucei, Homo sapiens
(AAH09903.1) and Saccharomyces cerevisiae (CAA98602.1). Both human, yeast and trypanosome have a common Cys2His2-like Zn finger motif. C. T.
brucei, Homo sapiens (AAH01976.1) and Saccharomyces cerevisiae (CAA89497.1). The human and yeast sequences have two SWAP/Surp domains each
in tandem while T. brucei has just one SWAP/Surp domain.
doi:10.1371/journal.pone.0091956.g005

Table 1. Proteins associated with SF3a60 by tandem affinity purification.

MS identified T. brucei protein MW (Da) Score PEP % Coverage Homologues

Tb927.7.6980 (SF3b130) 198106 99 5 1.5 Rse1 (yeast), SF3b130 (human)

Tb927.6.3160 (SF3a60) 62262 1024 142 39 Prp9 (yeast), SF3a60 (human)

Tb927.3.1140 (SF3a120) 43679 2952 122 39 Prp21 (yeast), SF3a120 (human)

Tb927.2.2270 (SF3a66) 26890 72 25 9.6 Prp11 (yeast), SF3a66 (human)

doi:10.1371/journal.pone.0091956.t001

Trypanosome SF3a60

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e91956

T. brucei



SF3a60 Silencing Affects Trypanosome Viability with no
Detectable Trans Splicing Defects
The down regulation of SF3a60 expression using RNA

interference resulted in growth inhibition within 48 hours

(Figure 2A) and efficient reduction in the SF3a60 mRNA

(Figure 2B). To test whether the RNAi gave detectable inhibition

of splicing, we chose a time point when there was not yet severe

growth inhibition. Northern blotting using a tubulin probe

revealed the presence of a bicistronic beta-alpha tubulin RNA

(Figure 2B), the abundance of which is increased on splicing

inhibition [25]. We observed no increase in this bicistronic RNA

after SF3a60 RNAi. In addition, we used primer extension to

measure the abundance of the Y-structure trans splicing interme-

diate. As expected, incubation with Sinefungin caused a decrease

in the amount of Y structure relative to full-length SLRNA, and the

migration of the full-length primer extension product was very

slightly slower than normal, due to a decrease in cap methylation

[25] (Figure 3: lane 4 against lane 1). In contrast, RNAi (lanes 2

and 3) reproducibly had no effect on the migration of the full-

length SLRNA or the relative abundance of the Y structure. It is

evident that although SF3a60 is essential, RNAi does not cause a

detectable decrease in splicing, at least under conditions when

growth inhibition is not yet detected.

Components of the Trypanosome SF3a Complex are
Conserved
To identify the components of SF3a we purified it using C-

terminally TAP-tagged SF3a60. Purification of an empty TAP-

tagged construct served as a control. Figure 4 shows the SYPRO

Ruby stained protein gel and the indentified proteins are listed in

Table 1. We found four proteins with 5 or more significant peptide

matches. Tb927.3.1140 and Tb927.2.2270, the homologues of

SF3a120 and SF3a66, were clearly identified. It is therefore

possible that the trypanosome SF3a60 can interact with these

components individually and it will require further experiments to

demonstrate they form a single complex in trypanosomes. Figure 5

shows the partial sequence alignments of trypanosome, human

and yeast SF3a subunits. T. brucei SF3a60, like protein homologues

from human [26] and S. cerevisiae [27], share considerable

homology in their C-terminal zinc finger domain. However, only

the S. cerevisiae SF3a60 contains a second C2H2 zinc finger domain

in its central region. This second zinc finger has also been noted in

S. pombe, N. crassa [27] (data not shown). SF3a66 proteins from T.

brucei (accession no. XP951536), human [28], and S. cerevisiae [29]

all harbor a conserved C2H2 zinc finger domain. The C-terminal

sequence of T. brucei and yeast are relatively shorter and lack the

proline-rich heptapeptide repeats [28]. Trypanosome SF3a120

(accession no. XP843708), unlike human [30] and S. cerevisiae [31]

which have SURP-1 and SURP-2 domains in tandem, contain

only one C-terminal SURP-2 domain and an evidently shorter C-

terminal segment. As expected, the SURP-2 domain is within the

selected interaction domain (Figure S1).

In addition, we identified Tb927.7.6980. Although this protein

is not yet annotated, it is clearly SF3b130 as judged both by

BLAST searches (score and coverage shown in Table 1) and the

fact that it was previously shown to co-purify with tagged SmD1

[10]. The SF3b subunits, in contrast, were not found in those

experiments.

Genome-wide Yeast Two-hybrid (Y2H) Screening
Identifies Novel Potential SF3a60 Interaction Partners
Tandem affinity purification normally results only in the

detection of stable interactions. To see if we could trace any

other interactions, which might be sub-stoichiometric or transient,

we screened a Yeast 2 hybrid T. brucei prey genomic library using

SF3a60 as bait. Given the enormous evolutionary distance

between yeast and trypanosomes, indirect interactions bridged

by specific binding to yeast spliceosome components were not

expected. The screen led to the identification of 44 possible protein

preys (excluding self-activating and redundant hits). Using a

predicted biological score (PBS), calculated according to [32], the

protein preys were grouped into four categories: very high

confidence, high confidence, good confidence and moderate

confidence (Summarized in Table 2). The domains and portion

of each protein hit that mediates the interaction with SF3a60, the

so-called selected interaction domain (SID) has also been shown

(Figures S1 to S4). Reassuringly, SF3a120 was clearly identified as

a very high confidence prey; among the others in this category

were a putative splicing-associated RNA helicase and two TPR

repeat proteins. The 24 ‘‘moderate’’ confidence interactions

included the two genes encoding the RNA polymerase II largest

subunit RPB1 [33]. Tb927.10.15570, a putative transcription

factor [34] was also identified in this screen. Local sequence

alignment using EMBOSS (www.ebi.ac.uk/Tools/psa/) revealed

that Tb927.1.3560 is 18% identical and 29.9% similar to the yeast

U1 snRNP component Prp40; it contains WW domains, two

highly conserved tryptophans that bind proline-rich peptide motifs

found in the splicing factor Prp40 [35,36] but no FF domains

(Figure 6, Figure S5). SF3b components were not found,

suggesting that the interaction between SF3a60 and SF3b is

indirect or via the core U2 snRNP [11].

Discussion

We have here presented experimental evidence identifying

potential trypanosome homologues to yeast Prp9 (human SF3a60),

Prp21 (human SF3a120) and Prp11 (human SF3a66). Compared

to the human and yeast homologues, the trypanosome SF3a

proteins show N-terminal sequence divergence but as shown in

figure 5, contain all the functional domains which in humans, are

needed to facilitate interactions between themselves and for

integration into the U2 snRNP [11]. Concurrent with data from

previous studies in which SF3a subunits from human and yeast

readily formed the SF3a heterotrimer [11,28,30,37–40], our TAP-

tagging results demonstrate the association between SF3 a60, SF3

a66 and SF3 a120 in the trypanosome.

Although the Northern blots of SF3a60-depleted cells showed

reduced amounts of mature SF3a60 mRNA as expected, we

Figure 6. Sequence conservation for putative T. brucei PRP40.
A. The WW domains of human FBP11 (O75400.2), yeast PRP40
(NP_012913.3) and the putative Trypanosome FBP11 homologue
contain the tryptophans, prolines and a central set of three
hydrophobic residues characteristic of WW domains. Evidently, the
putative T. brucei FBP11 lacks a second WW domain.
doi:10.1371/journal.pone.0091956.g006

Trypanosome SF3a60
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Table 2. SF3a60-associated protein preys from a genome-wide Yeast-2-hybrid screen.

1Confidence Level TriTrypDB locus No. 2Domain/Motif 3Annotation Source/Ref

Very high Tb927.11.1520 Coiled domain Expression site-associated gene (ESAG3) protein, putative. TritrypDB

Tb927.11.16890 TPR Hypothetical protein, conserved TritrypDB

Tb927.11.4550 Coiled domain Hypothetical protein, conserved TritrypDB

Tb927.2.2210 Hypothetical protein, conserved, mitochondrial TritrypDB

Tb927.3.1140 SWAP/Surp T. brucei SF3a120 This study

Tb927.3.3150 TPR Hypothetical protein, conserved TritrypDB

Tb927.7.1560 TPR (Yeast TOM71 (P = 2.6e-07), blast-back P = 3.6e-07) [68]

Tb927.7.4410 (Yeast CAF120 (P = 0.68), blast-back P = 0.86) [69]

Tb927.10.7280 DEAD/DEAH (Yeast PRP22 (P = 2.9e-173), blast-back P = 2.1e-178) [50] [51]

High Tb927.9.11930 Rad4 T. brucei DNA repair protein, putative) TritrypDB

Tb927.10.8130 TM Hypothetical protein, conserved TritrypDB

Tb927.11.2290 Hypothetical protein, conserved TritrypDB

Tb927.1.3560 WW (but no FF) (Yeast PRP40 (P = 0.015), blast-back P = 0.0026) [35] [36]

Tb927.3.4460 (Yeast SRB2 (P = 0.77), blast-back P = 0.88) [70]

Good Tb927.7.4080 ATPase, helicase T. brucei DNA excision repair protein TritrypDB

Tb11.01.6840 Coiled domain Hypothetical protein, conserved TritrypDB

Tb927.11.16580 TPR Hypothetical protein, conserved TritrypDB

Tb927.11.16990 Nucleotide hydrolase Hypothetical protein, conserved TritrypDB

GTPase

Tb927.11.3410 TM Hypothetical protein, conserved TritrypDB

Tb927.3.3130 TM, SAM Hypothetical protein, conserved TritrypDB

Moderate Tb927.4.5020 Rpb1, C2H2 T. brucei RNA polymerase IIA largest subunit TritrypDB

Tb927.8.7400 Rpb1, C2H2 T. brucei RNA polymerase IIA largest subunit TritrypDB

Tb927.8.930 Coiled domain Hypothetical protein, conserved TritrypDB

Tb927.9.3680 Prefoldin superfamily, Hypothetical protein, conserved TritrypDB

Coiled domain

Tb927.9.10840 Hypothetical protein, conserved TritrypDB

Tb927.10.12870 Coiled domain Hypothetical protein, conserved TritrypDB

Tb927.10.15570 Coiled domain T. brucei transcription factor IIA-2 [34]

Tb927.10.5910 Coiled domain Hypothetical protein, conserved TritrypDB

Tb927.10.5400 TM, coiled domain Hypothetical protein, conserved TritrypDB

Tb927.10.2600 Hypothetical protein, conserved TritrypDB

Tb927.11.16050 TPR, HSP20 (Hsp90 cochaperone, (P = 0.00023), blast-back P = 0.00059) [71]

Tb927.11.5410 Hypothetical protein, conserved TritrypDB

Tb927.3.3220 TPR T. brucei CTR9 [56]

Tb927.3.3810 2xTM Hypothetical protein, conserved TritrypDB

Tb927.4.2640 TPR, IQ Calmodulin Hypothetical protein, conserved TritrypDB

Tb927.5.4110 ARM repeat (Yeast RTG2 (P = 0.37), blast-back P = 0.49) [72]

Tb927.6.900 Coiled, ApoLp-III-like Hypothetical protein, conserved TritrypDB

Tb927.7.2330 DUF1663 Hypothetical protein, conserved TritrypDB

Tb927.7.4150 Hypothetical protein, conserved TritrypDB

Tb927.7.5430 Hypothetical protein, conserved TritrypDB

Tb927.8.2880 Hypothetical protein, conserved, mitochondrial. TritrypDB

Tb927.8.4400 Hypothetical protein, conserved TritrypDB

Tb927.8.4870 WD40 T. brucei CMF6, DIGIT, flagellar component [73]

Tb927.8.8200 PIN domain, prefoldin Hypothetical protein, conserved TritrypDB

1Confidence levels according to PBS scores [32].
2Domains (superfamily, Pfam) predicted in TritrypDB (http://tritrypdb.org/tritrypdb/); a blank space indicates those without known domains.
3Functional designation. Functions predicted on the basis of sequence match alone are shown in parentheses.
doi:10.1371/journal.pone.0091956.t002
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detected no effect on trans-splicing (Figure 3). In addition, we saw

no accumulation of tubulin mRNA dimers suggesting that tubulin

processing and stability [41–43] was not compromised, which

could also imply trypanosome SF3a60 RNAi has no effect on pre-

mRNA splicing. There are several possible explanations for this.

The first is that this is in fact not SF3a60: this is unlikely based on

co-purification with other proteins similar to SF3a components.

The second is that SF3a60 is not required for trans splicing, but as

a scaffold for other splicing factors which is improbable, but not

impossible. Already, there are instances in other eukaryotes where

splicing factors have been found essential for spliceosome assembly

and consequently cell viability, but not for splicing [44,45]. The

third explanation is that upon sufficient depletion, the inhibition of

RNA processing is so severe that it rapidly results in cell death.

In the TAP purification, the excised SF3a60 band was actually a

doublet (Figure 4), with a slightly faster-migrating component that

appeared to be present at sub-stoichiometric levels; we do not

know what this is - it could be modified SF3a60, but could also be

HSP70, which was (as always) identified as a contaminant. A much

slower-migrating band was identified as (SAP130) SF3b130. Other

components of SF3b may also have been present in our

purification at sub-stoichiomentric levels, but were not identified

because we sequenced only strongly stained bands. An exhaustive

two-hybrid screen previously identified the physical interaction

between S. cerevisiae Prp9p and Rse 1p, the yeast homologue of

SF3b130 [46]. Recently, a high throughput affinity-capture

experiments with Rse1p detected interaction with all three SF3a

components [47,48].

To detect sub-stoichiometric or less stable interactions, we

conducted a yeast two-hybrid screen using SF3a60 as bait. The

differences with respect to number of hits identified between TAP

pull-down and two hybrid screens is striking, but expected.

Although likely to be transient, these hits were nonetheless

biologically significant and are likely to occur in vivo and could

be validated further via experimental functional analyses. While

we identified hits across all the Global PBS confidence intervals,

several of these proteins have domains that suggest involvement in

aspects of gene regulation. An interaction between human

SF3a120 and SF3a60 was previously documented [11] and,

reassuringly, was confirmed here for trypanosomes, documenting

the sensitivity of our screen. This interaction was detectable

despite the presence of only one C-terminal SURP-2 domain in

trypanosome SF3a120. The SURP2 domain has previously been

implicated in protein binding activity to SF3a60 [49]. SF3b130

was not, in contrast, found in the yeast two-hybrid screen.

Although this result may be a false negative, it is likely SF3b

associates with SF3a via a subunit other than SF3a60. The

specificity of the remaining interactions will require verification.

We identified two putative helicases: Tb927.10.7280 (a DExD/H

box protein that is already annotated as a putative splicing factor,

although without experimental evidence) and Tb927.7.4080.

Their corresponding homologues in yeast (Prp22 and RAD26)

are involved in pre-mRNA splicing [50,51] and DNA repair [52]

respectively. The assignment of Tb927.10.7280 as a pre-mRNA

splicing factor in the Tritryp database is however without any

experimental evidence and its association with T. brucei SF360 is a

positive step towards its complete annotation. Six SF3a60

associated proteins have TPR motifs, which predisposes them to

various aspects of protein-protein interactions, including during

splicing [53–55] and are candidates for further characterization.

One of these, Tb927.3.3220 (trypanosome CTR9) has recently

been shown to interact with trypanosome CDC73 and a putative

LEO1 homolog [56]. In Opisthokonts and plants, these proteins

are components of the Paf complex, which functions in different

aspects of gene expression including transcriptional elongation and

termination, mRNA processing and export and epigenetic changes

[57]. The mitochondrial membrane localization for Tb927.2.2210

and Tb927.8.2880 is interesting and could be subject to further

investigation, especially since a group of yeast mitochondrial

proteins have been associated with T6, one of the six complexes

primarily populated by spliceosomal proteins [58].

One of the high-confidence interaction partners, Tb927.1.3560,

could be the putative trypanosome homologue of yeast Prp40, a

component of the U1 snRNP - although it was not found to

associate with tagged TbU1–70K [59] or the core snRNP protein

SmD1 [10], SmB [60] and SmD3 [61] in proteomic analyses. The

U1 snRNP is not engaged in trans splicing, but is required for the

cis splicing of at least two trypanosome mRNAs [62]. Although the

putative trypanosome FBP11 homologue has only one of the two

N-terminal WW domains found in corresponding yeast and

human sequences (Figure 6) and lacks the associated FF repeats

(Figure S5), previous studies have shown that Prp40 WW domains

are sufficient for binding to the phospho-CTD (C-terminal repeat

domain) and that the FF regions could function to increase the

overall phospho-CTD binding affinity [35]. A possible role of

Prp40 in U2 snRNP – E complex association [36] has been

suggested previously. That Tb927.1.3560 is the trypanosome

homologue to yeast Prp40 could extend our understanding of a

possible association of U1 snRNP and the recruitment of U2

snRNP in trans-splicing. U2 snRNP specific proteins (A9, B9 and

SF3a/b sub-units) were also found at low levels in association with

the E complex [63]. Tb927.10.15570 was also identified in this

study as potential prey to SF3a60. This protein was previously

identified as an as an integral component of the RNA polymerase

II transcription factor complex that contains SNAPc, TRF4/TBP

and TFIIA-1 and consequently named TbTFIIA-2 [34]. TRF4/

TBP-SNAPc-TFIIA binds to the SL RNA gene promoter and is

absolutely essential for SL RNA gene transcription [34,64].

The most interesting 2-hybrid interaction was with the largest

subunit of RNA polymerase II (RPB1). There is a voluminous

literature describing the strong link between polymerase II

transcription and splicing in metazoans and yeast (reviewed in

[65]). The observation of a direct interaction between SF3a and

RNA polymerase II is surprising for two reasons. First, most

papers concerning eukaryotic cis splicing discuss mainly an

association between the spliceosome and the phosphorylated C-

terminal heptad repeats of RNA polymerase II (reviewed in [66]).

The trypanosome RNA polymerase II lacks heptad repeats and it

is unknown whether it can be phosphorylated in yeast. Second, the

association between polymerase II transcription and splicing

appears to occur mainly during events at the 59 splice site

(summarized in [67]). Evidence so far indicates that in trypano-

somes, events at the trans splicing acceptor site - in which SF3 is

involved - are independent of the transcribing polymerase [67].

Nevertheless, the possible interaction between trypanosome RNA

polymerase II and SF3a, in addition to the cellular roles of the

detected hypothetical gene products deserve further investigation.

Supporting Information

Figure S1 Domain organization of very high confidence SF3a60

associated proteins. The hits, their corresponding domains and the

amino acid portion involved in the interaction with SF3a60 (SID)

are shown.

(PDF)

Figure S2 Domain organization of high confidence SF3a60

associated proteins. The hits, their corresponding domains and the
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amino acid portion involved in the interaction with SF3a60 (SID)

are shown.

(PDF)

Figure S3 Domain organization of good confidence SF3a60

associated proteins. The hits, their corresponding domains and the

amino acid portion involved in the interaction with SF3a60 (SID)

are shown.

(PDF)

Figure S4 Domain organization of moderate confidence SF3a60

associated proteins. The hits, their corresponding domains and the

amino acid portion involved in the interaction with SF3a60 (SID)

are shown.

(PDF)

Figure S5 The FF domains of PRP40 proteins. The corre-

sponding FF domains of human FBP11 (O75400.2), yeast PRP40

(NP_012913.3) are shown here in bold and starting points marked

with an asterisk (*) within the alignment, except for T. brucei FBP11

homologue where they are absent.

(PDF)
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